
Tutorial: UNIX Basics

James B. Pease

Department of Biology, Wake Forest University

Updated: July 8, 2019
1. Install software

1.1. First, we need to ensure that we all have several important pieces of software
installed.

1.2. A plain text editor: Microsoft Word, etc. are “rich-text editors” meaning that in
addition to the letter characters themselves, Word documents store all kinds of
formatting information that is hidden in their data structure. We will need to use
a plain text editor so that we can see all of the raw data in our “plain-text” files.
If you have one you already use and like, please go ahead. I recommend Geany,
which works on OSX, Windows, and Linux. Geany is available for download here
https://www.geany.org/Download/Releases, or through most Linux software li-
braries.

1.3. A UNIX Terminal:

1.3.1. If you have Linux or MacOSX, these already have a UNIX Terminal program
(it’s usually called Terminal). On MacOSX, you can open Terminal via Spot-
light (the search icon in the upper right) or by opening Utilities in Applica-
tions. Once the program is open and the icon appears in the Dock, I recom-
mend clicking-and-holding on the icon and selecting “Keep in Dock” so that
it’s easy to re-open later.

1.3.2. If you have Windows, you should download and install MobaTek
http://mobaxterm.mobatek.net/download-home-edition.html.
Click the green button on the right and follow the instructions to install. If
you would rather use Putty or some other UNIX terminal, that’s fine too.

1.4. Seaview: This is a biological sequence viewer, aligner, and phylogeny maker that
is a little bit low-tech, but pretty easy to use.
http://doua.prabi.fr/software/seaview. Works on Linux, MacOSX, and Windows.
Just download and follow installation instructions.

1

https://www.geany.org/Download/Releases
http://mobaxterm.mobatek.net/download-home-edition.html
http://doua.prabi.fr/software/seaview

2. Why learn to use a computer like this?

2.1. It’s a fair question. There are a lot of practicing biologists who never learn to use
a computer at the command-line level. Why bother?

2.2. First, the latest and greatest software often does not come with a glossy interface.
This is because it often takes much longer to program the interface itself than
it does to create the software algorithms (the actual functional part). Scientists
often want to make software that helps them answer their questions, and have
little incentive and time to make interfaces. So learning to work this way will
prepare you to use majority of cutting-edge bioinformatics software that is only
available at the command line.

2.3. Second, this will open up a whole new set of possibilities in terms of how to ac-
tually use your computer. Most people are using about 10% of the capacity of
their computers and often do repetitive tasks laboriously instead of learning how
to make the computer do the work. Automate and “pipeline” processes also re-
duces manual errors in science. A simple example is the difference between trying
to manually change the same word repeatedly throughout a document instead of
using the Search/Replace All feature of most document editors.

2.4. Finally, it helps you connect with the data itself and understand how the bits
and bytes actually are processed. Doing bioinformatics using all summarized and
visualized data through graphical interfaces is a little like taking a trip on train.
On a train, its efficient and everything is largely done for you, but the scenery
can whiz by, you do not get an organic sense of the terrain, and you have to stick
to the tracks and cannot pursue side paths. We are going to learn how to drive
the off-road mountain bike. Riding your bike is more difficult at first, but you get
to interact with the landscape, understand small but meaningful details, and you
have ability to take your own path and asking new questions.

2.5. Ok. Hopefully you are convinced. Enough philosophizing. Let’s dive in.

2

3. How to use this guide
3.1. This guide include a series of steps, numbered in a nested numeric outline style.

This is so that if you have a question, you can say “I am stuck on step 1.1”

3.2. Frequently you will see the font change into more typewriter-like font (like below).
This denotes a command that you will enter into the terminal.

3.2.1. $commands are formatted like this

3.3. In this guide (and many like it) a “$” character will appear at the start of each
command you should not type this character. Why put it there then? This is to
show that there are no preceding spaces or denote if text were to appear before
the prompt where you enter text.

3.4. Sometimes you will see multiple lines of commands as below.

3.4.1. $this commands is very very very very very long \

and does not fit all on one line

3.5. Note the “backslash” \ character. This denotes where the same command contin-
ues onto the next line. You can literally type a \ and press Enter, then continue on
the next line, or just ignore it and keep typing the command. Contrast this with
the example below. However, a \ must be followed immediately by Enter. If you
use a \ in the middle of a line, this has a different meaning.

3.5.1. $this is the first command

$this is the second command

3.6. In the example above, there are two separate commands at two separate $ com-
mand prompts. This means you should enter the first command and press Enter
(the Enter key will be capitalized). After the first command completes, enter the
second command and press Enter.

3.6.1.

3.7. UNIX is case-sensitive, always. The commands below are treated as completely
separate commands by UNIX.

3.7.1. $somecommand

$Somecommand

$Some-Command

3.8. When we discuss key combinations like Ctrl+C, this means you should hold the
Ctrl-key and press the C-key. Since this is conventional, I will always use the
upper case letters to refer to the key. So Ctrl+C refers to holding the Ctrl-key
and pressing the C-key, while Ctrl+Shift+C means holding the Ctrl-key and the
Shift-Key then pressing the C-key. Ctrl+c (with a lower case “c”) will not be used.

3.9. The commands in these tutorials are shown in a teletype monospace font, such as
would appear on a older typewriter. These fonts are commonly used by program-
mers since the characters are all exactly the same width and so that characters are
easily distinguishable. Note lower-case L (l) and a number 1 (1) can be similar,
so observe the difference here. Note also that captial O (O) and zero (0) are quite
different different.

3

3.10. The terms “directory” and “folder” are now effectively synonyms for the nested
hierarchical organizational scheme by which files are organized in a computer
system. Technically, a “folder” is a type of file directory not invented until the
visual folder icons in Windows 95. I will use directory throughout these tutorials,
but folder, in common parlance, means essentially the same thing.

3.11. UNIX users have a spoken language all their own and often a way commands are
verbalized by special pronunciation in conversations. I will indicate this verbaliza-
tion of UNIX in curly brackets with italics. For example, the command ls is said
{“list”}, and the command mkdir is {“make-dur”}.

3.12. Questions will also appear in the text for you to check your conceptual and tech-
nical knowledge.

3.12.1. Example:

QUESTION #1: What are orthologs?

Sequences from individuals separated by speciations.

3.13. A final note: Do not just copy and paste the commands into the Terminal.
You are learning a new language. Copying and pasting the commands would
be like trying to learn Spanish by pasting English into an online translator and
pasting the results into your homework. Typing in these commands manually
character by character builds. . . well. . . character. You will make mistakes. It will
be frustrating. Then you will improve and you will remember these commands
better. An exception are long file paths and URLS. These are often copied and
pasted by pros to prevent errors.

4. Opening a terminal

4.1. First open your Terminal window and create a new session.

4.2. Once you have an open terminal window, enter the following command:

4.2.1. $echo "hello, world!"

4.2.2. Congratulations! You have officially (if not before now) been inducted into
the UNIX Lifestyle. “hello, world!” is one of the oldest test command phrases,
going back at least to 1972.

5. Home directory

5.1. You should now see a new prompt on the remote server. You are in your home
directory, which is the default place you will log into every time. You can think of
it a little bit like the “Documents” folder on MacOSX or Windows. This your basic
user directory, under which all other subdirectories that contain your files will be
located.

5.2. In order to get oriented a little more specifically, you should find out what your
present working directory is (i.e., the folder that you are executing commands
in).

5.2.1. $pwd

4

5.2.2. This shows that you are in the directory /home/USERNAME/ (or something
like this). This is what is called a path, which gives the complete address
of a location in the computer’s file directory structure. Note that in UNIX,
the file path is a text address of a folder location, with the folder levels sep-
arated by forward slashes “/”. In this case, the path shown is an absolute
path, since it tells the address back back to the root of the system file orga-
nization. The root is analogous to the C:\ drive on a Windows computer. It
is the basic directory for the computer, versus your user home directory. The
absolute path of the root is simply /, all the user directories are in a directory
located at path /home, and your user directory is located inside this directory
at /home/USERNAME.

5.2.3. � QUESTION 1: : If you created a folder inside you home folder called
apples and created two folders inside apples called oranges and pears,
then what are the absolute paths of the directories oranges and pears.

5.3. Run the following ls {“list”} command to the list files in the current directory.

5.3.1. $ls

5.3.2. You shouldn’t see anything (because there should not be files in your home
directory).

5.4. Now a make a file, and check again.

5.4.1. $touch emptyfile.txt

$ls

5.4.2. The touch command creates a file with no data inside it. Then you have
something to list (ls) in your home directory.

5.5. Now lets make a directory with mkdir {“make-dir”} for this first lab.

5.5.1. $mkdir lab01

5.5.2. Why lab01 and not just lab1? In UNIX, when we get to ten directories, the
sorted order of the directories would be lab1, lab10, lab2, lab20, lab3

(since it sees the 1 character before 2 before 3). If we added a leading zero,
then the order becomes lab01, lab02, lab03, lab10, lab20, lab30.

5.6. Now we will list the contents again, but with an extra part to the command.

5.6.1. $ls -l

5.6.2. The -l is what is called an argument. Arguments refer to all required or op-
tional additional paramters given at the command line after a program name.
In this case, -l stands for “long” and so gives you a long-form description of
the files. Since -l takes no additional paramters with it, it is known as a flag.

5.6.3. You can see the output of this command gives a lot more information. In
particular notice that in the left column lab01 has a d for “directory” in front
of the rwx characters (those are file permissions, which we may discuss later).
It also shows the user who owns the files (should be you), the last date of
modification, and the size of the files (in bytes).

5

5.7. The alternative to a flag is an option, which does take a parameter. An example
of an option for ls is:

5.7.1. $ls -w 20

5.7.2. In the command above the -w option is used to specify the width of the output
text on the screen to 20 characters. Notice that the output moves text onto
separate lines once the list of file names goes over 20 characters.

5.8. Try this command:

5.8.1. $ls -w 2000

5.9. Now try using -w without a parameter value.

5.9.1. $ls -w

5.9.2. You should get an error that the “option requires an argument” meaning that
you needed to provide a value for the width. Just telling the program “change
the width to” does not make sense without a number.

5.10. There are also arguments that do not use a - prefix (like with mkdir above), others
that use one - (like -w above), and some that use two dashes (--width can be
used instead of -w).

5.11. To see the complete set of arguments for a program you can use one of two ap-
proaches:

5.11.1. $ls --help

5.11.2. Now you can see all the (surprisingly numerous) options for the ls command
and examples of how to use it. The --help flag is nearly universal in UNIX-
based software. Some programs also will use -h interchangeably or to give
more/less help text than --help.

5.12. The second method is to use the manual program to access the manual (sometimes
just abbreviated as the “man-pages”).

5.12.1. $man ls

5.12.2. � QUESTION 2: What does the -h flag in ls do?
5.12.3. Now once you run this program you are actually in a special environment that

views text documents. The command prompt is gone, but don’t panic! You
can use the Up and Down arrow keys (or Page Up/Down) to scroll through
the text. When you are ready to leave the manual, just press “q” (for quit).

5.13. Now you should be back in the home directory.

6. Moving around

6.1. Change directories into the new directory you just created using the cd (change
directory) command.

6.1.1. $cd lab01

6.2. Now use pwd to see where you are.

6

6.2.1. $pwd

6.2.2. This should show a path of /home/USERNAME/lab01 (or something like that).

6.3. If we want go back to the directory we were just in, which is the “parent direc-
tory.” We use:

6.3.1. $cd ..

6.4. This is just cd followed by a space (you have to use a space) followed by two
periods .. {“dot-dot”}. The .. refers to the parent directory of wherever you are.
So if you imagine the directory structure like a hierarchical tree, .. is always the
directory “above” or containing the current directory that you are in.

6.5. Now let’s go back to the lab01 directory.

6.5.1. $cd lab01

6.6. Use pwd one more time to confirm you are back in the lab01 directory.

6.6.1. $pwd

7. File manipulation

7.1. Move the emptyfile.txt file you made earlier from the parent directory into the
current directory using the mv {“move/em-vee”} command.

7.1.1. $mv ../emptyfile.txt ./emptyfile.txt

7.1.2. Be careful here. The first argument should have two periods and the second
only one. When you use a single period “.”, this refers to the current direc-
tory, where .. refers to the parent directory of the current directory. So this
command tells it to move it from the parent directory to the current directory.

7.2. We can “rename” files in UNIX this way. I say “rename” because what we are
actually doing is moving the file to a different address. It amounts to the same
thing, but technically there is no “rename” function in UNIX, we just “move” the
file to a different name.

7.2.1. $mv emptyfile.txt newname.txt

7.2.2. Note that we excluded the ./ this time. UNIX will assume you are talking
about files in the current directory if you do not specify otherwise.

7.3. Try the reverse operation using a different command structure:

7.3.1. $mv /home/USERNAME/lab01/newname.txt \

/home/USERNAME/lab01/emptyfile.txt

7.3.2. � QUESTION 3: Is the command the same or different with/without the “\”
character? Why?

7.3.3. This performs the same function as the above command, but with a key dif-
ference. In the first one, we used the local path of the file and UNIX correctly
assumed we meant files in the current directory. In the second command, we

7

used the absolute path (or full path) of the files, which specifies their location
back to the root (/). The second command could have been run from any
directory and move the files to those exact locations. The first one would only
work in the directory where the files were located.

7.4. We can also make copies of the files with the cp {“copy/cee-pee”}.

7.4.1. IMPORTANT! Unlike the operating system, if you mv or cp a file to a file path
that already exists it will NOT check if there is a file there already and prompt
you to ask if you want to overwrite the file. It will just overwrite the file. Use
with caution.

7.4.2. $cp emptyfile.txt tempfile.txt

$ls

7.4.3. This makes a new copy of emptyfile.txt called tempfile.txt.

7.5. Since we do not need tempfile.txt, we can just remove (delete) the file using
the rm {“rem/arr-em”} command.

7.5.1. WARNING! Linux will not prompt you (usually) to double-check if you really
want to delete the file. Use with caution.

7.5.2. $rm tempfile.txt

$ls

7.5.3. You can see that now the file is gone. In this case, gone does not mean in
the “recycling bin” or “trash” where it can be recovered. In UNIX, deletion is
permanent (by default). So be careful.

7.6. Make the file again, but this time notice the different rm flag.

7.6.1. $cp emptyfile.txt tempfile.txt

$rm -i tempfile.txt

7.6.2. See how it prompts you to make sure you want to remove it. That’s because
you used the -i flag for “interactive” mode. In the next section, we will learn
how to use a command-line text editor and make this policy the default.

8. Making a text file

8.1. So we’ve just discovered that, by default, UNIX does not prompt you in the case of
cp, mv, and rm overwrites and deletions. However, we also know now that there
is a -i flag that exists for rm that does check. As it happens all three commands
have this flag. We can set it up so that this is the default behavior without having
to remember the -i flag.

8.2. We are going to edit a file that customizes how the command-line shell (the basic
operating system environment) how to interpret commands (for your username
only). First, we will want to make a backup in case anything goes wrong.

8.2.1. $cp ~/.bashrc ~/.bashrc.backup

8.2.2. The ~ character is a shorthand for your home directory path. So you can use
it in place of /home/USERNAME/ when writing file paths.

8.3. But how did that file get there? I thought my home directory was empty?

8

8.3.1. In UNIX, files that begin with . are hidden. When you run ls it does not show
hidden files unless you use the “all” flag.

8.3.2. $ls -a ~

8.3.3. Here, you ran ls with the “all” -a flag to show you all files including hidden
files. You also ls-listed your home directory while still in the lab01 directory
as your current directory. So ls can list files in any folder while still currently
in other folder.

8.3.4. You should now be able to see both .bashrc and .bashrc.backup in your
home directory.

8.4. Now let’s open the .bashrc using a plain-text editor called nano.

8.4.1. $nano ~/.bashrc

8.4.2. You can see again we have left the command prompt and entered into the
program’s text-based interface. There is a toolbar at the bottom that shows
you some commands. The ˆ symbol refers to the Ctrl-key on your keyboard.

8.4.3. You should see some text on the screen (or it may be empty).

8.5. Use the Down key to move down to the bottom and press Enter to start a new line.

8.6. Add the following lines of text exactly as written, including spaces:

8.6.1. alias rm='rm -i'

alias mv='mv -i'

alias cp='cp -i'

8.7. Press Ctrl+O, then the Enter-key to “Output” the file to memory (i.e., “save” it).

8.8. Press Ctrl+X to “eXit” nano

8.9. Now log out (yes! log out) of the server by using the command.

8.9.1. $exit

8.10. Log back in using the same process as before.

8.11. Now again navigate to the lab01 directory, copy the file, and remove it.

8.11.1. $cd lab01

$cp emptyfile.txt tempfile.txt

$rm tempfile.txt

8.11.2. If the above operation worked, you should now by default be prompted if
you really want to delete this file. You should enter yes or just y and press
the Enter-key to confirm. n or no or anything else will cancel the operation.
This will undoubtedly be helpful. Anyone who uses UNIX has a story about
a regrettable rm. There are even stores about an unfortunate web site en-
trepreneur or two who accidentally rm-ed their whole business website.

8.11.3. You also just learned a little bit about how to use nano, which is not a powerful
text editor, but is simple to use.

9. Other ways to view text

9

9.1. Make another file in the lab01 directory using nano.

9.1.1. $nano data.txt

9.2. Once in the nano interface, enter the following text

9.2.1. guanine

cytosine

adenine

thymine

9.2.2. Now output (Ctrl+O, then Enter-key) and exit (Ctrl+X).

9.3. List the files long-form and you should see that the file is there and has a non-zero
size

9.3.1. $ls -l

9.4. For short files, you can view the contents of any file in the standard terminal output
(without modifying the file) using a number of commands. Try the following and
observe the results.

9.4.1. $cat data.txt

$head -n 1 data.txt

$tail -n 2 data.txt

9.4.2. The first one is cat (short for “catalog”), which displays the entire contents of
the file. The second and third are head and tail, which display the first and
last lines, respectively of a file. By default, head and tail display 10 lines.
Here we have used the option -n (for “number”) to specify only one or two
lines.

9.5. nano is a simple text editor, but not efficient at previewing large files. For read-
only (no modifying) access to files (particularly large ones) a program called less

is recommended.
9.5.1. $less data.txt

9.5.2. Once again, you have entered a text-based program interface. You can scroll
up and down using the Up/Down or Page Up/Down keys. If you want to see
all the commands for less press the h-key. To quit the help and to quit the
program press the q-key.

9.6. Finally, let’s look a powerful text filtering and searching tool call grep (globally
search a regular expression and print).

9.6.1. $grep "ade" data.txt

9.6.2. You should see that grep output was simply the line adenine. This is because
our search term was “ade”, so grep will look through the file for any lines of
the file (not words or characters) that match this pattern and output it.

9.7. Now try a different search string (a string is a programming term for a set of
characters)

9.7.1. $grep "nine" data.txt

10

9.7.2. Now you should have gotten two lines output adenine and guanine which
both contain the string “nine” (the other two do not)

9.8. We can also output this text to a new file by using a redirect.

9.8.1. $grep "nine" data.txt > nine.txt

$less nine.txt

9.8.2. The first command runs the grep command and then we use > (think of it like
a little arrow) to “redirect” the output that would have gone to the screen into
a different file. When you run less you should see that nine.txt only has
the same content as the grep output that went to the screen in the previous
example.

9.8.3. Do not confuse this with the $ markers at the begginning of lines. Remember
those characters should not be typed, and only denote the command prompt
itself.

9.9. Using grep and cat together with redirects can be useful.

9.9.1. $grep "nine" data.txt > nine.txt

$grep "thy" data.txt > thy.txt

$cat nine.txt thy.txt > notcytosine.txt

$less notcytosine.txt

9.9.2. Here we used two grep calls to make a file containing the two lines containing
“nine” and a separate for the one containing “thy”. Then we can cat these files
together by running cat on both and redirecting the output to a new file.

9.10. We could have also counted how many matches are in each grep file using grep.

9.10.1. $grep -c "nine" data.txt

$grep -c "thy" data.txt

$grep -c "n" data.txt

$wc -l nine.txt

$wc -l thy.txt

9.10.2. The first two commands run grep with the -c (“count”) flag turned on. This
simply returns the number of lines that match the search string, not the num-
ber of times the string is matched.

9.10.3. The third command shows this difference. If you try to count the number of
matches of the string “n,” grep returns 4. This is because although there are
6 “n”s in the text (2 in adenine and guanine), there are only 4 lines with n, so
grep still returns 4.

9.11. We can also count the total number of lines (and words) in a file with the wc

command (“word count”). Lines are counted using the -l flag.

9.11.1. $wc -l nine.txt

$wc -l thy.txt

9.12. Let’s learn another useful command: sort
9.12.1. $sort data.txt

$sort data.txt > data_sorted.txt

11

9.12.2. The first command will output to the screen the lines sorted in alphabetical
order. The second will redirect the same to a new file.

10. The escape hatch

10.1. Let’s learn a command that is not necessarily very useful at the moment, but will
help illustrate a principle. So far we have executed commands on very small files
where the result appears instantaneously. Sometimes it happens that you will ex-
ecute the wrong command or a command gets “stuck” for a variety of reasons
or exhibits some errors that do not terminate the program (usually called “warn-
ings”).

10.1.1. The sleep command tells the computer to do just that, to wait for a specified
number of seconds.

10.1.2. $sleep 2

10.1.3. You can see the command prompt waits for two seconds, then the program
exits. This program does nothing on its own, but can be used to help time up
programs used in a more complex series of programs.

10.1.4. Now run this:
10.1.5. $sleep 600

10.1.6. Now you can see the program is going to wait for 600 seconds (10 minutes),
during which time you cannot enter any additional commands at the com-
mand prompt. Not ideal.

10.1.7. Now press Ctrl+C. This will Cancel the program. This is fairly universal in
UNIX at the command line when script are running. Note however that inside
a program environment interace, like less or nano. Ctrl+C will not work to
quit the program or stop it.

11. Downloading and Compression

11.1. We might want to download a file from the internet. To do so we can use a
command called wget {“double-u-get”}, which is short for “web get.”

11.1.1.
$wget \

ftp://hgdownload.soe.ucsc.edu/goldenPath/hg38/database/chromInfo.txt.gz

11.1.2. Verify the file downloaded and open the file with nano.

11.1.3. $ls

$nano chromInfo.txt.gz

11.1.4. You will be prompted "chromInfo.txt.gz" may be a binary file. See

it anyway?. Press the Y-key and then the Enter-key.
11.1.5. � QUESTION 4: Describe what you see.
11.1.6. That’s because the file is a compressed file (similar to a “zip file”) and not in

raw-text form.
11.1.7. Use Ctrl+X to leave nano

12

11.2. The file is compressed by the GZIP compression algorithm. In order to decompress
it we can use.

11.2.1. $gunzip chromInfo.txt.gz

$ls

$nano chromInfo.txt

11.2.2. The first command decompressed the file (g-unzip), then list the files. You will
see that chromInfo.txt.gz is now chromInfo.txt, which is about 21 kB in
size. The file is now uncompressed and thus able to be viewed with less..

11.3. You can re-compress the file by using gzip.

11.3.1. $gzip chromInfo.txt

$ls -l

11.3.2. The files name should now once again be chromInfo.txt.gz.
11.3.3. � QUESTION 5: What are the sizes of the compressed and uncompressed

files.
11.3.4. For a small file like this, compression does not matter much, but consider a

huge file of hundreds of GB (gigabytes). At the same reduction factor, we now
only have to download a 10-GB file instead of a 70-GB file, which saves a lot
of time and internet bandwidth.

12. Working with Text Files

12.1. We can search files using less to find information that we need.

12.2. Uncompress the again file by using gunzip and then view with less. However,
this time when you are typing the name, type gunz and then press the Tab-key.
You should see that the word “autocompletes” because there is only one command
that starts with gunz. Now begin typing chrom and press the Tab-key again. Since
there is only one file with a name starting with chrom, the name is autocompleted.

12.2.1. $gunzip chromInfo.txt.gz

$less chromInfo.txt

12.2.2. Autocomplete saves a lot of time and frustration, practice using it as often as
possible.

12.2.3. You can see that the file contains lines of text with three values each separated
by “tab” characters. A tab-character is an invisible character that is different
from a space. Tabs cue the text viewer to shift the text over to line it up. This
type of file is called a tab-separated values (TSV) file. Where tab-characters
are the “field delimeter” (i.e., the character between the data fields.

12.2.4. � QUESTION 6: : What would you guess line 1 would look like in another
comma data file type called a comma-separated values (CSV) file?

12.2.5. The values in file are the chromosome name, chromosome length, and some
other information about the file formatting (2bit).

12.2.6. We can use the search function in less to find text quickly.
12.2.7. Press the “/”-key (forward-slash). You will see a prompt activate at the bottom

of the screen.

13

12.2.8. Type chrX and press the Enter-key.
12.2.9. The less view window should advance so that the line starting with chrX is

the top line and the characters chrX are highlighted.
12.2.10. The /-key activates the forward-search, which looks for the next match to you

search string from your current position.

12.3. To backward-search, press Shift+/ (for ?), again a prompt will appear. Type chr

and press the Enter-key.

12.3.1. This time less searched backward from your current position to find the pre-
vious match of the chr string, which should be the previous line.

12.3.2. � QUESTION 7: Describe how to search for the mitochondrial chromosome
chrM. What is the length of the mitochondrial reference chromosome?

13. � QUESTION 8: Synthesis (record all steps)

13.1. Use the commands you’ve learned to do the following:

13.2. Download the file ftp://hgdownload.soe.ucsc.edu/goldenPath/hg38/database/tRNAs.txt.gz

13.3. Using grep and redirect to make a file that only shows tRNA sequences on the X
chromosome.

13.4. Using wc, how many entries are there on the X chromosome?

13.5. Using the search in less, where is the tRNA gene labeled tRNA-Ile-GAT-1-1

located on the X? (You should see two numerical columns that show the start and
end coordinates)

13.6. Now rename the original tRNA file a hidden file using the mv command. What
command did you use?

13.7. What command would you use to compress the output from grep?

14. ADVANCED EXERCISES (on your own, if you want extra prac-
tice. You will need to search the internet for help)

14.1. � QUESTION 9: What commands using tr, awk, and/or sed to swap the first
and second columns of chromInfo.txt. Upload the output as chromInfoTrans-
pose.txt.

14.2. � QUESTION 10: How can you use piping (“|”) to take the output from a grep

search and sort it all in one command? Include your command and the output
file as PipedOutput.txt.

14.3. � QUESTION 11: Create a shell script (.sh) file to execute any block of above
commands in one call. Upload this file as ShellScript.sh.

14.4. � QUESTION 12: Start a sleep process, “suspend” it, now make it run in the
“background.” Use the ps command to find the process, then use kill to end it
early.

14.5. � QUESTION 13: Execute a grep search on chromInfo.txt using any “regular
expressions” record your command and output.

14

